ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ УСТРОЙСТВА

NI PXIe-5654

Генератор радиосигналов частотой 10ГГц или 20 ГГц

В настоящем документе приведены характеристики генератора радиосигналов NI PXIe-5654 (NI 5654) и модуля расширения диапазона амплитул NI PXIe-5696 (NI 5696).

Если не указаны иное, характеристики в этом документе относятся и к генератору радиосигналов NI 5654, и к комплексной системе, состоящей из NI 5654 с NI 5696.

Минимальные или максимальные характеристики гарантируются при следующих условиях.

- Время прогрева 30 минут
- Не завершен срок действия калибровки
- Установлена высокая скорость вращения вентилятора шасси
- Использован драйвер прибора NI-RFSG

В документе приведены гарантированные, контролируемые производителем характеристики изделия при температуре окружающей среды от 0 °C до 55 °C, если не указаны иное.

Типовые значения относятся к полезным характеристикам изделия, которые лежат вне диапазона гарантированных производителем и не включают в себя допуски по погрешности измерений или дрейфу. Типовые значения могут контролироваться не у всех изделий, выпускаемых с завода. Если не указано иное, типовые значения, полученные на основании измерений в процессе проектирования и производства, с доверительной вероятностью 90% охватывают ожидаемые характеристики изделия при температуре окружающего воздуха 23 °C \pm 5 °C.

Номинальные значения (или справочная информация) дают дополнительную информацию об изделии, которая может оказаться полезной и включает в себя ожидаемые параметры, находящиеся за пределами *характеристик* или *типовых* значений. На номинальные значения гарантия не распространяется.

В спецификации могут быть внесены изменения без уведомления. За уточненными в настоящее время характеристиками NI 5654 обратитесь по адресу *ni.com/manuals*.

Предупреждение Защита изделия может быть повреждена при использовании его способами, не описанными в настоящем документе.

Горячая поверхность При использовании NI 5654 температура его поверхности может существенно увеличиться и привести к появлению ожогов. Позвольте NI 5654 остыть, прежде чем извлекать его из шасси.

Предупреждение He отсоединяйте кабель между RF AMP OUT и ATTN IN. Отсоелинение кабеля или иные лействия с разъемами на лицевой панели RF AMP OUT или ATTN IN делают недействительной калибровку изделия, и приведенные характеристики более не гарантируются.

Для доступа к документации NI 5654 перейдите в меню Пуск»Все программы» National Instruments»NI-RFSG»Documentation

Содержание

Частота	4
Время установления частоты	4
Опорный сигнал	4
Встроенный тактовый генератор	4
Выход внутренного опорного сигнала 1	4
Выход внутреннего опорного сигнала 2	5
Вход внешнего опорного сигнала	5
Чистота спектра	5
Паразитные сигналы	7
Амплитуда	10
Выходная мощность	
Амплитудная погрешность	12
Время установления амплитуды	14
Порог шума	15
Коэффициент стоячей волны напряжения (КСВН)	
Модуляция	16
Амплитудная модуляция	16
Частотная и фазовая модуляции	16
Требования к питанию	19
Калибровка	
Физические характеристики	20
Лицевые панели устройств	20
Типы разъемов лицевой панели	21
Массогабаритные показатели	22
Условия окружающей среды	22
Условия эксплуатации	22
Условия хранения	23
Устойчивость к ударам и вибрации	23
Соответствие требованиям и сертификаты	
Безопасность	
Электромагнитная совместимость	24
Соответствие требованиям Совета Европы	24
Онлайн-сертификация.	24
Охрана окружающей среды	25

Частота

Диапазон	от 250 кГц до 20 ГГц
Разрешение	0.001 Гц
Погрешность	Обратитесь к разделу Опорная частота.

Время установления частоты

Таблица 1. Максимальное время установления частоты

Вариант устройства	Время установления ¹²³
Стандартный ⁴	1 мс
С быстрой подстройкой ^{4, 5}	100 мкс

Опорная частота

Встроенный тактовый генератор

Начальная погрешность	±0.1 ppm, максимум
Температурная погрешность (от 15 °C до 35 °C)	±0.2 ррт, максимум
Временной дрейф (за день через 30 дней)	±0.01 ppm, максимум
Временной дрейф (через 10 лет)	±1.25 ppm, максимум

Выход внутреннего опорного сигнала 1

Название разъема	REF OUT
Частота	10 МГц
Амплитуда	+5 дБм ± 2 дБ
Связь	по переменному току
Выходное сопротивление	50 Ом

 $^{^{1}}$ Время установления находится в пределах 0.01 ppm от заданной частоты.

² Характеристика времени установления частоты включает только установление частоты и не включает остаточное установление амплитуды, которое может происходить в результате большого изменения частоты.

³ Для получения наилучшего детерминизма и точности при быстром переключении частоты используйте внешний тактовый генератор в качестве источника сигналов запуска.

 $^{^4}$ Добавьте 1 мс к времени установления при переходе от частоты >250 МГц к <250 МГц.

⁵ Время установления частоты между 250 кГц и 250 МГц составляет 150 мкс.

^{4 |} ni.com | Технические характеристики NI PXIe-5654

Выход внутреннего опорного сигнала 2

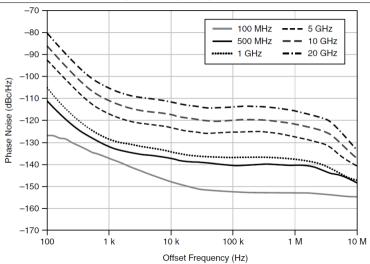
Название разъема	REF OUT 2
Частота	100 МГц
Амплитуда	+5 дБм ± 2 дБ
Связь	по переменному току
Выходное сопротивление	50 Ом

Вход внешнего опорного сигнала

Название разъема	REF IN
Частота	от 1 МГц до 20 МГц с шагом 1 МГц
Амплитуда	от -10 дБм до +10 дБм
Входное сопротивление	50 Ом
Блокировка внешнего опорного сигнала	<2 c

Чистота спектра

Таблица 2. Фазовый шум однополосного сигнала при выходной мощности +8 дБм

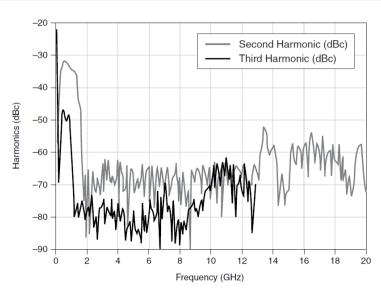

Частота (ГГц)	Фазовый шум (дБн/Гц)					
	100 Гц	1 кГц	10 кГц	100 кГц	1 МГц	10 МГц
0.5	-111,	-131,	-137,	-139,	-140,	-147,
	тип.	тип.6	тип.	тип.	тип.	тип.
	-107,	-127,	-135,	-137,	-138,	_
	макс.	макс.6	макс.	макс.	макс.	
1	-105,	-125,	-133,	-133,	-134,	-141,
	тип.	тип.	тип.	тип.	тип.	тип.
	-101, макс.	-121,	-130,	-131,	-132,	_
		макс.	макс.	макс.	макс.	
5	-91,	-111,	-124,	-125,	-127,	-136,
	тип.	тип.	тип.	тип.	тип.	тип.
	-87,	-109,	-120,	-122,	-125,	_
	макс.	макс.	макс.	макс.	макс.	

 $^{^{6}}$ Уменьшается на 1 дБ при использовании NI 5654 с NI 5696.

Таблица 2. Однополосный фазовый шум при выходной мошности +8 дБм (продолжение)

Частота (ГГц)	Фазовый шум (дБн/Гц)					
	100 Гц	1 кГц	10 кГц	100 кГц	1 МГц	10 МГц
10	-85,	-105,	-117,	-119,	-121,	-136,
	тип.	тип.	тип.	тип.	тип.	тип.
	-81,	-103,	-114,	-117,	-119,	_
	макс.	макс.	макс.	макс.	макс.	
20	-79,	-99,	-111,	-113,	-115,	-130,
	тип.	тип.	тип.	тип.	тип.	тип.
	-75,	-97,	-108,	-111,	-113,	_
	макс.	макс.	макс.	макс.	макс.	

Рисунок 1. Типичный фазовый шум (паразитные частоты не показаны)


Offset Frequency (Hz) – Смещенная частота (Гц), Phase Noise (dBc/Hz) – фазовый шум (дБн/Гц)

Паразитные сигналы

Таблица 3. Типичные гармоники

Частота		Гармоники (дБн)		
	NI 5654 ⁷	NI 5654 c NI 5696 ⁸		
от 250 кГц до <250 МГц	≤-20	≤-20		
от 250 МГц до <1 ГГц	≤-25	≤-25		
от 1 ГГц до <2 ГГц	≤-30	≤-30		
от 2 ГГц до <12 ГГц	≤-40 ⁹	≤-55		
от 12 ГГц до 20 ГГц	≤-40	≤-50		

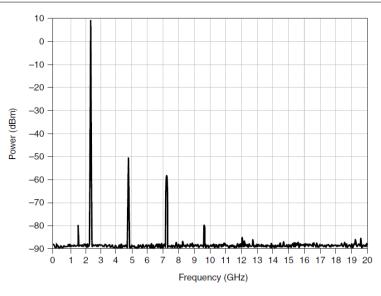
Рисунок 2. Типичные уровни гармоник NI 5654 с NI 5696 при выходной мощности + 8 дБм

Frequency (GHz) – Частота (ГГц), Harmonics (dBc) – Гармоники (дБн), Second Harmonic (dBc) – вторая гармоника (дБн), Third Harmonic (dBc) – третья гармоника (дБн)

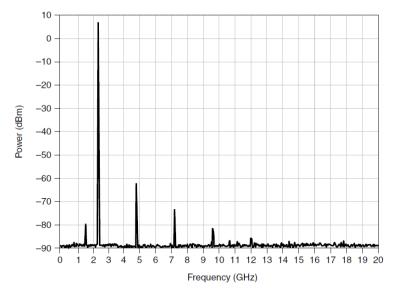
Измерено при выходной мощности +10 дБм.

Измерено при выходной мощности +8 дБм

 $^{^9}$ Уменьшается до -35 д Бн между 4.35 ГГц и 4.45 ГГц.

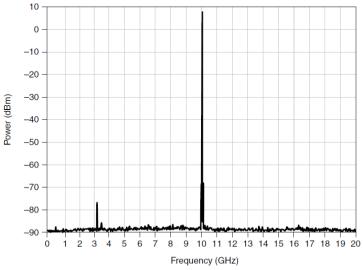

Таблица 4. Типичные субгармоники

Частота	Субгармоники (дБн)		
	NI 5654 ⁷	NI 5654 c NI 5696 ⁸	
от 250 кГц до <10 ГГц	-65	-65	
от 10 ГГц до <12 ГГц	-60	-60	
от 12 ГГц до 20 ГГц	-50	-45	

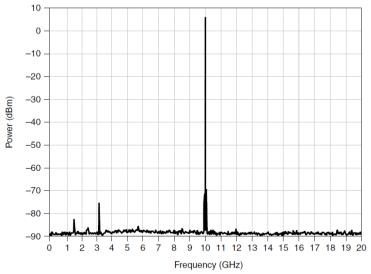

Таблица 5. Типичные негармонические пики

Частота	Негармонические пики (дБн)		
	NI 5654 ⁷	NI 5654 c NI 5696 ⁸	
от 250 к Гц до <8 Г Гц	-65	-65	
от 8 ГГц до <10 ГГц	-60	-60	
от 10 ГГц до 20 ГГц	-60	-55	


Рисунок 3. Типичный спектр NI 5654 на частоте 2.4 ГГц



Frequency (GHz) – Частота (ГГц), Power (dBm) – мощность (дБм)



Frequency (GHz) – Частота (ГГц), Power (dBm) – мощность (дБм)

Frequency (GHz) – Частота (ГГц), Power (dBm) – мощность (дБм)

Frequency (GHz) – Частота (ГГц), Power (dBm) – мощность (дБм)

Амплитуда

Выходная мощность

Таблица 6. Максимальная сглаженная выходная мощность (дБм)

Частота	NI 5654		NI 5654 c NI 5690	5
	Характеристика	Типичное значение	Характеристика ¹⁰	Типичное значение
от 250 кГц до ≤250 МГц	+10	+12	+10	+13
от 250 МГц до ≤1 ГГц	+13	+14	+20	+23
от 1 ГГц до ≤3 ГГц	+13	+14	+24	+27
от 3 ГГц до ≤6 ГГц	+13	+15	+23	+26
от 6 ГГц до ≤8 ГГц	+13	+15	+20	+25
от 8 ГГц до ≤12 ГГц	+13	+14	+20	+22
от 12 ГГц до ≤15 ГГц	+13	+15	+20	+21

 $^{^{10}}$ Характеристики относятся к температурному диапазону 25 °C \pm 10 °C

^{10 |} ni.com | Технические характеристики NI PXIe-5654

Таблица 6. Максимальная сглаженная выходная мошность (дБм) (продолжение)

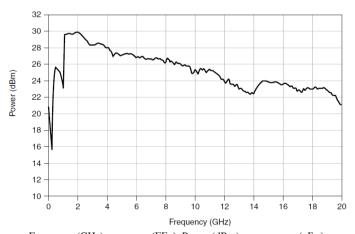

Частота	NI 5654		NI 5654 c NI 5	696
	Характеристика	Типичное значение	Характеристика 10	Типичное значение
от 15 ГГц до ≤18 ГГц	+13	+15	+18	+21
от 18 ГГц до ≤20 ГГц	+12	+14	+18	+20

Таблица 7. Номинальная минимальная мощность (дБм)

Частота	NI 5654	NI 5654 c NI 5696
от 250 кГц до <250 МГц	-10	-110
от 250 МГц до <2 ГГц	-7	-110
от 2 ГГц до <18 ГГц	-7	-110
от 18 ГГц до 20 ГГц	-7	-110

Разрешение 0.01 дБ

Рисунок 7. Типичная максимально достижимая мощность NI 5654 с NI 5696

Frequency (GHz) – частота (ГГц), Power (dBm) – мощность (дБм)

Амплитудная погрешность

Режим без обратной связи¹¹ 12

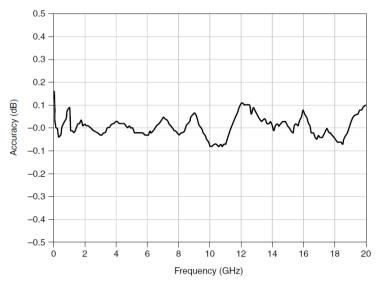
±2 дБ, тип. 13

Таблица 8. Амплитудная погрешность (дБ) NI 5654 с NI 5696 при 5 °C \pm 10 °C, режим с обратной связью 14

Средняя частота несущей	от >+13 дБм до макс. сглаженной мощности	от -10 дБм до +13 дБм ¹⁵	от -40 дБм до <-10 дБм	от -80 дБм до <-40 дБм	-100 дБм до <-80 дБм	от -110 дБм до <-100 дБм
250 МГц	_	±0.35, тип.	±0.60, тип.	±0.70, тип.	±2.0, тип.	±2.5, тип.
	_	±0.80, макс.	±1.20, макс.	±1.50, макс. 16	_	_
от 250 МГц до	±0.60, тип.	±0.35, тип.	±0.60, тип.	±0.70, тип.	±2.0, тип.	±2.5, тип.
<8 ГГц	±1.20, макс.	±0.80, макс.	±1.20, макс.	±1.50, макс.	_	_
от 8 ГГц до 20 ГГц	±0.60, тип.	±0.35, тип.	±0.60, тип.	±0.70, тип.	±2.0, тип.	±2.5, тип.
	±1.30,	±0.80,	±1.20, макс.	±1.50, макс.	_	_

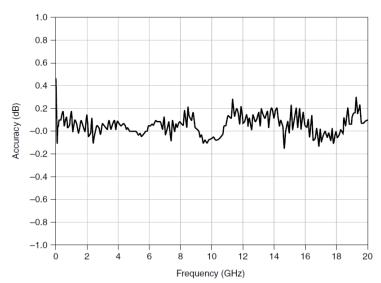
11

¹¹ Задает амплитудную погрешность как для модуля NI 5654, так и для системы NI 5654 с NI 5696 при отключенном автоматическом регулировании уровня. Поиск мощности улучшает точность амплитуды.

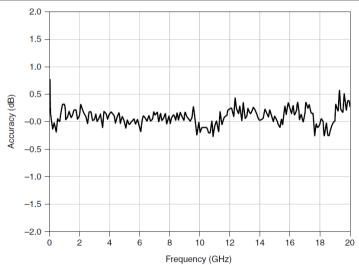

 $^{^{12}}$ Для NI 5654 с NI 5696, обратитесь к таблице *Амплитудная погрешность* для получения значений амплитудной погрешности < 100 дБм.

 $^{^{13}}$ Типичное значение равно ± 2.5 дБ для частот < 20 МГц.

¹⁴ Режим с обратной связью требует модуль расширения диапазона амплитуд NI 5696 и указывает на то, что автоматическое регулирование уровня включено.


¹⁵ Гарантируется +10 дБм для частот ≤ 250 МГц

 $^{^{16}}$ Максимальное значение для частот < 20 МГц равно ± 1.75 дБ.



Frequency (GHz) – частота (ГГц), Ассигасу (dB) – погрешность (дБ)

Рисунок 9. Типичная погрешность мощности NI 5654 с NI 5696 при -70 дБм

Frequency (GHz) – частота (ГГц), Accuracy (dB) – погрешность (дБ)

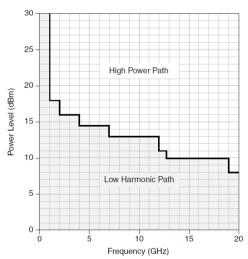
Frequency (GHz) – частота (ГГц), Ассигасу (dB) – погрешность (дБ)

Время установления амплитуды

Таблица 9. Типичное время установления амплитулы

Конечная частота	NI 56	554 ¹⁷	NI 5654 с (Режим без связ	обратной	NI 5654 с (Режим с связы	обратной
	Время установления 1,5 дБ	Время установления 2 дБ	Время установления 1,5 дБ	Время установления 2 дБ	Время установления 0,2 дБ	Время установления 0,5 дБ.
<250 МГц	4 мс	3,5 мс	4 мс	3,5 мс	4 мс	3 мс
>250 МГц	500 мкс	300 мкс	500 мкс	300 мкс	4 мс	3 мс

Типичное значение времени установления амплитуды 0.2 дБ равно 25 мс (NI 5654 с NI 5696, изменено положение механического аттенюатора)


¹⁷ Минимальное время установления частоты в режиме без обратной связи составляет 1 мс (тип.) для стандартного регулирования и 100 мкс (тип.) при быстрой подстройке.

 $^{^{18}}$ Добавьте 1 мс ко времени установления при входе в в частотный диапазон от 250 МГц до 2.4 ГГц. Для изменений частоты внутри диапазона от 250 МГц до 2.4 ГГц дополнительного времени на установление не требуется.

¹⁹ Добавьте 2,5 мс ко времени установления при пересечении границы 250 МГц.

²⁰ Добавьте 2,5 мс ко времени установления при переключении из нижних гармоник или высоких мощностей. Обратитесь к рисунку *Уровни мощности перехода* для получения дополнительной информации о переключениях трактов.

^{14 |} ni.com | Технические характеристики NI PXIe-5654

Frequency (GHz) – частота (ГГц), Power Level (dBm) – уровень мощности (дБм), High Power Path – тракт с высокой мощностью, Low Harmonic Path – тракт с низкими гармониками

Уровень собственных шумов

Уровень собственных шумов²²

<-145 дБн/Гц. тип. при смешении >20 МГц

Коэффициент стоячей волны по напряжению (КСВН)

Таблица 10. КСВН NI 5654 с NI 5696

Усилительный тракт ²³	Частотный диапазон	КСВН
Тракт с низкими гармониками	от 250 кГц до 8 ГГц	<1.6:1
	от 8 ГГц до 20 ГГц	<2.0:1
Тракт с высокой мощностью	от 1 ГГц до 20 ГГц	<2.0:1

Выходное сопротивление 50 Ом

21.

²¹ На этом рисунке представлено переключение трактов по умолчанию, используемое в NI-RFSG. Характеристики NI 5654 с NI 5696 измерены при переключении трактов по умолчанию.

 $^{^{22}}$ Измерено при выходной мощности +10 дБм для NI 5654. Измерено при выходной мощности +8 дБм для NI 5654 с NI 5696.

²³ Обратитесь к рисунку Уровни мощности перехода для получения дополнительной информации о различии трактов с низкими гармониками и с высокой мощностью.

Модуляция

Поддерживаемые типы модуляции ²⁴	амплитудная модуляция (АМ), частотная
поддерживаемые типы модулиции	модуляция (FM), фазовая модуляция (PM) и
	импульсная молупяция

Амплитудная модуляция	
Название разъема	AM IN
Частота модуляции	от постоянного тока до 100 кГц
Входное напряжение	±1 В, ном.
Диапазон AM ²⁵	±10 дБ, ном.
Максимальное входное напряжение	+2 B
Минимальное входное напряжение	-2 B
Входное сопротивление	50 Ом, ном.

Частотная и фазовая модуляции

Название разъема	FM IN	

Таблица 11. Режимы работы FM

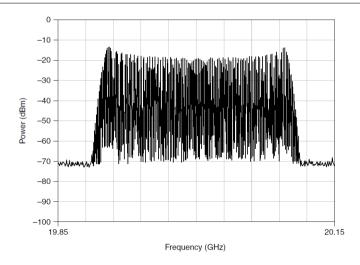

Частота модулируемого сигнала	Полоса FM
от 100 Гц до 1 кГц	Узкополосный
от 1 кГц до 10 кГц	
от 10 кГц до 100 кГц	
>100 кГц	Широкополосный

Таблица 12. Режимы работы РМ

Частота модулируемого сигнала	Режим РМ
Постоянный ток	Низкий фазовый шум
От постоянного тока до 100 кГц	Большая девиация

 $^{^{24}}$ Типы модуляции AM, FM и PM заданы в качестве технической возможности, а не гарантируемой характеристики.

характеристики. ²⁵ Измерено при выходной мощности +3 дБм для NI 5654. Для NI 5654 с NI 5696 диапазоны АМ варьируются в зависимости от частоты и мощности, а также от выбранного усилительного тракта. В худших случаях диапазон АМ может снизиться до 0 дБ.

Frequency (GHz) – частота ($\Gamma\Gamma$ ц), Power (dBm) – мощность (дБм)

Таблица 13. Коэффициенты деления FM и PM²⁶

Частотный диапазон (МГц)	Коэффициент деления (N)
От 10 400 до 20 800	1
От 5 200 до 10 400	2
От 2 600 до 5 200	4
От 1 300 до 2 600	8
От 650 до 1 300	16
От 325 до 650	32
От 250 до 325	64

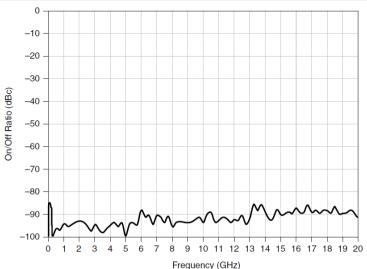
Импульсная модуляция²⁷

Название разъема

PULSE IN

Частота следования импульсов

от "постоянного тока" до 10 МГц


 $^{^{26}}$ Для любых настроек FM или PM достижимая девиация уменьшается в каждой полосе с коэффициентом $1/\!N$ при изменении частоты

²⁷ На максимально достижимой мощности

Входное напряжение

RF включен	высокий уровень TTL
RF выключен	низкий уровень TTL
Максимум	+5.5 B
Минимум	-0.5 B
Входное сопротивление	>100 кОм
Отношение уровней вкл/выкл несущей (от 250 МГц до 20 ГГц) 28	80 дБ

Рисунок 13. Отношение уровней вкл/выкл при импульсной модуляции

Frequency (GHz) – частота (ГГц), On/Off Ratio (dBc) – соотношение вкл/выкл (дБн)

Минимальная длительность импульсов (от 250 МГц до 20 ГГц)	50 нс, тип.
Время нарастания/спада (от 250 МГц до 20 ГГц)	15 нс
Максимальное сжатие импульса 29 (от 250 МГц до 20 ГГц)	15 нс, ном.
Время задержки (от 250 МГц до 20 ГГц)	<35 нс, ном.
Выброс на фронте импульса (от 250 МГц до 20 ГГц)	<10%

18 | ni.com | Технические характеристики NI PXIe-5654

 $^{^{28}}$ Отношение уровней вкл/выкл несущей составляет 80 дБ (тип.) на частотах от 12.75 ГГц до 13.75 ГГц. Уменьшается на 3 дБ в диапазоне температур от 0 °C до 55 °C.

²⁹ При частоте следования импульсов 10 МГц и скважности 50%

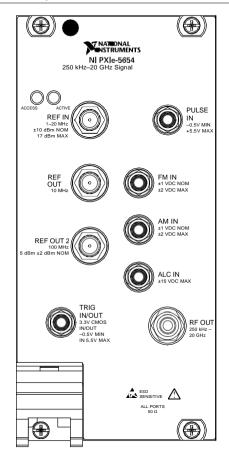
Требования к питанию

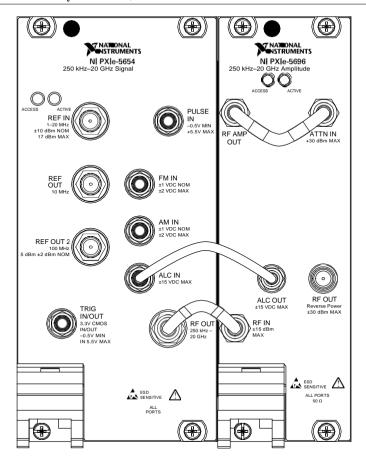
Таблица 14. Требования к источнику питания постоянного тока NI 5654

Напряжение (V _{DC})	Максимальный ток (А)	Типовой ток (А)
+3,3	2,5	1,9
+12	3	2,4

Таблица 15. Требования к питанию по постоянному току NI 5696

Напряжение (V _{DC})	Максимальный ток (А)	Типовой ток (А)
+3,3	3	2,2
+12	2,8	1,6


Калибровка


|--|

Физические характеристики

Лицевые панели устройств

Рисунок 14. Лицевая панель NI 5654

Типы разъемов лицевой панели

Генератор радиосигналов NI 5654	
REF IN	SMA гнездо
REF OUT	SMA гнездо
REF OUT 2	SMA гнездо
RF OUT	SSMA гнездо
TRIG IN/OUT	SMB
PULSE IN	SMB
FM IN	SMB
AM IN	SMB
ALC IN	SMB

Расширитель диапазона амплитуд NI 5696	
RF AMP OUT	SSMA гнездо
ATTN IN	SSMA гнездо
RF IN	SSMA гнездо
ALC OUT	SMB
RF OUT	3.5 мм гнездо

Массогабаритные показатели

Генератор радиосигналов NI 5654	
Размер	3U, три слота, модуль PXI Express
	6.1 см х 13.0 см х 21.4 см
	(2.4" x 5.1" x 8.4")
Bec	1,328 г (46.8 унций)
Расширитель диапазона амплитуд NI 5696	
Размер	3U, два слота, модуль PXI Express
	4.1 см х 13.0 см х 21.4 см
	(1.6" x 5.1" x 8.4".)
Bec	894 г (31.5 унций)

Окружающая среда

Максимальная высота над уровнем моря	2 000 м (800 мбар) (при температуре окружающей среды 25 °C)
Степень загрязнения	2

Для эксплуатации только в помещении.

Условия эксплуатации

Температура окружающей среды	от 0 °C до 55 °C (Протестировано в
	соответствии с нормативными
	документами IEC-60068-2-1 и IEC-60068-
	2-2). Удовлетворяет требованиям
	нормативного документа MIL-PRF-
	28800F, класс 3 для нижнего, и класс 2 -
	для верхнего предела температуры.
Диапазон относительной влажности	от 10% до 90%, без конденсата
	(Протестировано в соответствии с
	нормативным документом IEC-60068-2-
	78).

Усповия хранения

s este zont Aparterion	
Температура окружающей среды	от -40 °C до 71 °C (Протестировано в
	соответствии с нормативными
	документами IEC-60068-2-1 и IEC-60068-
	2-2). Удовлетворяет ограничениям
	нормативного документа MIL-PRF-
	28800F, класс 3.
Диапазон относительной влажности	от 5% до 95%, без конденсата
	(Протестировано в соответствии с
	нормативным документом IEC-60068-2-78).

Устойчивость к ударам и вибрации

30 g в пике, гармоническая
полуволна, импульс длительностью
11 мс (Протестировано в
соответствии с нормативным
документом IEC-60068-2-27).
Удовлетворяет ограничениям
нормативного документа MIL-PRF-
28800F, класс 2.
от 5 Гц до 500 Гц, 0.3 g
(среднеквадратическое значение)
от 5 Гц до 500 Гц, 2.4 g
(среднеквадратическое значение)
(Протестировано в соответствии с
нормативным документом IEC-60068-2-
64). Тестовый профиль для нерабочего
состояния выходит за рамки требований
нормативного документа MIL-PRF-

Соответствие требованиям и сертификаты

Безопасность

Изделие соответствует требованиям нижеследующих стандартов по электробезопасности лабораторного оборудования для измерений, управления и автоматизании:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Внутренний механический аттенюатор может изменить состояние во время удара.

Примечание: Информацию о сертификатах безопасности Вы можете найти на товарной этикетке, или в разделе *Онлайн-сертификация*.

Электромагнитная совместимость

Изделие удовлетворяет требованиям следующих стандартов по электромагнитной совместимости (ЭМС) лабораторного электрооборудования для измерений, управления и автоматизации:

- EN 61326-1 (IEC 61326-1): Излучения. Класс А; Первичная помехозащищенность
- EN 55011 (CISPR 11): Излучения. Группа 1; Класс А
- EN 55022 (CISPR 22): Излучения. Класс А
- EN 55024 (CISPR 24): Помехозащищенность
- AS/NZS CISPR 11: Излучения. Группа 1; Класс А
- AS/NZS CISPR 22: Излучения. Класс А
- Требования к уровню излучений Федеральной комиссии связи (FCC 47 CFR) США (Часть 15В): Излучения. Класс А
- Требования к уровню излучений Международного совета по исследованию моря (ICES-001): Излучения. Класс А

Примечание: в Соединенных Штатах (согласно федеральному закону FCC 47 CFR), оборудование класса А предназначено для использования в коммерческих помещениях, на предприятиях легкой и тяжелой промышленности. В Европе, Канаде, Австралии и Новой Зеландии (согласно CISPR 11) оборудование класса А предназначено для использования только на предприятиях тяжелой промышленности.

Примечание: К оборудованию группы 1 (по CISPR 11) относится любое промышленное, научное или медицинское оборудование, которое не излучает намеренно энергию радиочастот для обработки материалов или же инспекции/анализа.

Примечание: Чтобы найти декларации, сертификаты и иную дополнительную информацию по ЭМС, обратитесь к разделу *Онлайнсертификация*.

Соответствие требованиям Совета Европы

Изделие соответствует основным требованиям следующих директив СЕ:

- 2006/95/ЕС; Директива по безопасности низковольтного оборудования
- 2014/30/EU; Директива по ЭМС.

Онлайн-сертификация.

Дополнительную регуляторную информацию о соответствии Вы можете узнать из Декларации о соответствии изделия, которую можно найти на странице *ni.com/ certification* по серии и номеру модели, перейдя по соответствующей ссылке в столбие Certification.

Охрана окружающей среды

NI разрабатывает и производит продукцию с учетом требований по зашите экологии и принимает во внимание, что отказ от использования некоторых опасных веществ при изготовлении изделий полезен как для окружающей среды, так и для потребителей.

Лополнительная информация по защите экологии нахолится на странице Минимизация воздействий на окружающую среду (ni.com/environment). Эта страница содержит положения и лирективы по охране окружающей среды, которые соблюдает компания NL а также лругая информация о защите окружающей среды, не включенная в настояший документ.

Утилизация электрического и электронного оборудования

Потребителям из стран ЕС По окончании жизненного цикла все изделия NI должны быть утилизированы в соответствии с местными законами и нормами. Более подробную информацию об утилизации оборудования NI в вашем регионе вы можете узнать на странице ni.com/environment/weee.

由子信息产品污染控制管理办法(中国 RoHS)

● 中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录ni.com/environment/rohs_china。(Для получения информации о директиве по ограничению вредных веществ в Китае, обратитесь на страницу ni.com/environment/rohs china.)

Обратитесь к документу NI Trademarks and Logo Guidelines на сайте ni.com/trademarks для получения информации о торговых марках National Instruments. Названия других упомянутых в данном руководстве изделий и производителей также являются торговыми марками. Для получения информации о патентах, которыми защищены продукция или технологии National Instruments, выполните команду Help»Patents из главного меню вашего программного обеспечения, откройте файл раtents.txt на имеющемся у вас компакт-диске или зайдите на сайт ni.com/patents. Информацию о лицензионном соглашении с конечнымы пользователем (EULA), а также правовые положения сторонних производителей вы можете найти в файле readme вашего продукта NI. Обратитесь к документу Export Compliance Information на странице ni.com/legal/export-compliance за базовыми принципами торговой политики NI, а также чтобы получить необходимые коды НТS, ECCNs и прочие данные об экспорте/импорте. NI НЕ ДАЕТ НИКАКИХ ЯВНЫХ ИЛИ ПОДРАЗУМЕВАЕМЫХ ГАРАНТИЙ ОТНОСИТЕЛЬНО ТОЧНОСТИ ЭТОЙ ИНФОРМАЦИИ И НЕ НЕСЕТ ОТВЕТСТВЕННОСТИ ЗА ЛЮБЫЕ ОШИБКИ. Для государственных заказчиков США: Данные, содержащиеся в этом руководстве, были созданы за частные средства и регулируются ограниченными правами и правами на данные, не подлежащие разглашению, в порядке, предусмотренном законами FAR 52.227-14, DFAR 252.227-7014 и DFAR 252.227-7015.

© 2015 National Instruments. All rights reserved.